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Abstract. The authors recently derived a family of nonlinear Schrkiiinger equations on R3 from 
fundamental considerations of generalized symmetry: %a,* = -(hz/2m)V2* + F[*. $I* + 
ihD(V211. + ( l V ~ l 2 / 1 ~ I 2 ) ~ J ,  where F is an arbitrary real functional and D a real, continuous 
quantum number. These equations descriptive of a quantum mechanical cunent that includes a 
diffusive term, correspond to unitary representations of the group Diff(M) p m e u i z e d  by D, 
where M = R3 is the physical space. In the present paper we explore the most natural ansatz for 
F, which is labelled by five real coefficients. We discuss the invariance propetties, describe tbe 
stationary states and some non-stationary solutions, and determine the extw dissipative terms 
that m m  in the Ehrenfest theorem. We identify an interesting, Wean-invadant subfamily 
whose properties we investigate, including the case where the dissipative terms vanish. 

1. Introduction 

Considerations of generalized symmetry in quantum mechanics have led to a partial 
classification and interpretation of the unitary representations of a certain infinite- 
dimensional group and to the corresponding self-adjoint representations of its Lie algebra. 
The group is the natural semidirect product G ( M )  of the additive group d(M) of smooth, 
real-valued scalar functions on the manifold M, with the group Di f f (M)  of diffeomorphisms 
of M under composition (here all functions and diffeomorphisms are trivial at infinity). Its 
Lie algebra S(M), regarded as the natural (kinematical) symmetry algebra of M ,  is the 
semidirect sum of the Abelian Lie algebra of functions d(M), with the algebra Vect(M) of 
vector fieldson M (trivial at infinity), equipped with the usual Lie bracket. 

This approach to quantum theory began with a (singular) local algebra of gauge-invariant 
currents for M = R", proposed by Dashen and Sharp [I]; the corresponding non-singular 
current algeb? and the semidirect product group G(M) were derived and represented by 
Goldin [2,3]. For further applications, see [4-91. Doebner, Tolar and their collaborators 
quantized physical systems localized on smooth, topologically non-trivial manifolds M 110- 
141. In the resulting 'quantum Bore1 kinematics', the result is a self-adjoint representation 
of an algebra P(M), consisting of smooth, real-valued functions on M under pointwise 
operations coupled to Vect(M). But even for M = R3 (a single, spinless point particle), 
the irreducible representations of P(R3) or alternatively S(R3) via essentially self-adjoint 
operators are not unique. Under appropriate conditions they are parametrized (up to unitary 
equivalence) by a new real, continuous quantum number D [ll, 15,161. 
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1772 H-D Doebner and G A Goldin 

From the assumption of local probability conservation in these representations, we 
derived recently a family of nonlinear Schrijdinger equations, depending on D, governing 
the time evolution of the wavefunction [17]. For more detail conceming the representations 
and their interpretation, see [18-211. The timedependent quantum-mechanical probability 
density and current, obtained as expectation values, are (in the Schrdinger picture) 

- 
P@, 0 = (Po&)) = t)@(z, t )  
jD(z ,  t) = (J;(Z)) = (h/2im)($~+ - @v$) - DV($@). (1) 

Probability conservation is expressed locally by 

a,p = -v . j D  = -v . j D = Q  + ~ 0 2 p  (2) 

giving us a Fokker-Planck type of evolution equation, where the quantum number D is a 
(quantum) diffusion coefficient. Combining (1) with (2) gives the nonlinear Schrodinger 
equation in the form presented in [17], 

where F [ @ ]  is an arbitary real functional of @, $ and their derivatives; see below for 
a more direct formulation of (3). We interpret the right-hand side of (3 )  as H [ @ ]  so 
that %$@ = H[@] on an appropriate domain, giving us the most general nonlinear 
‘Hamiltonian’ consistent with (2). Previously we considered some properties of (3) in 
the cases where F 0, or where F = V(z) is just an external potential. In this paper we 
consider more general choices of F .  

Before proceeding further, we remark that as a consequence of the nonlinearity of the 
time evolution it is not possible to write ‘ p o p ( z .  t)’ and ‘Jg(z ,  t)’ as linear operators in 
a Heisenberg picture. The Schriidinger picture, in which the wavefunctions evolve and the 
operators are fixed, is essential. This corrects a tacit, erroneous assumption in earlier papers 
[16-21] but does not affect our conclusions. 

2. A parametrized family of equations 

Since it is the imaginary part I [ @ ]  of the nonlinear functional multiplying @ that is 
constrained, it is natural to rewrite (3) in the form 

(4) 

where the linear term HO = - ( f i z / 2 m ) ~  + V ( z ) ;  thus R is the real part of the nonlinear 
functional multiplying @. Our theory to this point gives no further information about 
R [ @ ] .  It is reasonable to assume then that R [ @ ]  is of a form similar to I [ @ ] ;  i.e. (i) 
it is proportional to hD’, where D’ bas the dimensions of diffusion coefficient (later we 
shall make the natural choice D‘ = ~ D ) ;  (ii) it is complex homogeneous of order 0, so 
that R[or@] = R [ @ ] ;  (iii) it is a rational function, with derivatives no higher than second 
order occurring in the numerator only; and (iv) it is invariant under the three-dimensional 
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Euclidean group E(3).  Under these conditions we derive a family of nonlinear Schrodinger 
equations parametrized by five real coefficients together with D’ [20,21]: 

Note that we can keep non-zero terms in R[*J@ by permitting D‘ # 0 when D = 0, or 
(formally) by setting D’ = D and letting the hi be proportional to 1/D before passing to 
the l i t  as D -+ 0. Thus we also obtain an interesting family of real nonlinear Scbrodinger 
equations from the considerations here. 

Alternatively, it is instructive to express R directly in terms of the physical quantities 
p and jD=’. Then we obtain 

wherecl = Az, cz = h1/2, c3 = h~-Al-h3.  c4 = A4 andcs = (h~-Al+A3)/4.  Conversely, 
we also have AI = 2 ~ 2 .  4 = c1, h3 = 2C5 - $ 3 . 1 4  = c4 and A5 = 2c2+ yc3 +2cs. Using 
the parametrization with the cj and setting D’ = D ,  we write the parametrized family of 
equations that results as &(cl,. . . , c5). The equation first derived in [I71 with F[@J = 0 
corresponds to the choices h2 = - 1 ,  hj = 0 ( j  # 2); equivalently, it is the member 
3 ~ ( - 1 , 0 , 0 , 0 , 0 )  of our family. 

We remark that the ‘Hamiltonian’ H[@] = Ho+ + iZ[*]@ + R[r/r]@, as a nonlinear 
operator on some domain $0, is not essentially self-adjoint; assuming it to be so would 
give a quantization (i.e. a representation of S(R3)) with D = 0. Thus X is not a physical 
observable in the sense of axiomatic quantum theory. Furthermore, the connection between 
the energy and the formal Hamiltonian, viewed as the generator of the one-dimensional 
group of time translations, can differ in the linear and the nonlinear cases. We discuss this 
point further in the next section and indicate one approach to controlling the situation. 

The meaning of energy as an observable is just one of several conceptual difficulties 
faced when one considers the possibility of a nonlinear evolution equation in quantum 
mechanics. Another unresolved question is how to interpret the possibility of using long- 
range quantum correlations to send instantaneous signals [E-251, or to communicate among 
different quantum mechanical worlds in a ~ ‘multiple-world’ interpretation [26].  These 
issues have been raised in connection with other proposed nonlinear modifications of the 
Scbrodinger equation [27-291, and in our view are far from being fully understood. 

1 

3. Invariance properties of the equations 

Because of the form of ~ o ,  Z[@I and R[*J, the family 3 D  is rotation-invariant if 
V = V(lz1) and E(3)-invariant if V = 0. It is interesting and very instructive to inquire 
about Galilean invariance in the free-particle case [30-321. Let G i ( 3 )  denote the subgroup 
generated by a central extension of E(3)  together with the Galilei boosts, parametrized by 
( R ,  a, U). where R is a rigid rotation in three dimensions, a is a translation and Y is a 
velocity tranformation; the subscript E indicates the central extension. The full Galilean 
group G E ( ~ )  is the semidirect product G0,(3)@,R,, where R, denotes the one-dimensional 
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time translations paramatenzed by t .  We use this decomposition because G%(3) will enter 
via a linear representation in the Hilbert space, labelled as usual by the mass m (from 
representing the central element) and having a spin 0; while the representation of RI is 
nonlinear because of the nonlinearity of H. 

under Galilean boosts are given by $ -+ $', where 
*'(z, t) = exp [-:(mu. z + + ~ ~ 2 t ) l  +(z + ut, t), or equivalently 

H-D Doebner and G A Goldin 

The transfomation properties of 

where (z', t') = (z - ut, t). We now determine the conditions under which (5) and (6) are 
Go,-invariant; i.e. we find the values of the coefficients for which if $(z, t )  is a solution, 
then V(z, t) is also a solution. A straightforward calculation yields the necessary and 
sufficient conditions, 

A z + h q = O  and A i + X 3 = h 5  (8) 

or equivalently, 

q + c q = O  and c 3 = 0  

The invariance of just a part of our family of equations, a subfamily that we label e', is 
perhaps surprising. We see that the Galilean invariance of the Fokker-Planck equation is 
broken at the level of the underlying Schrodinger equation. However, the nonlinear term, 
despite resembling a nonlinear potential (quantum potential), does not entirely spoil the 
invariance. It is notable that the 'generic' choice 3~(0,0.0,0,0), with R e 0, is invariant. 

Thus we can choose R such that invariance under a unitary representation U of 
Gi(3)-invariance is maintained. But the representation T of RI, defined at least for a 
neighbourhood of t = 0, is nonlinear; its differential is H. To decide whether U and T 
combine to give a representation G€(3) (at least in the neighbourhood of the unit element), 
we interpret the desired representation as a mapping from the Lie algebra G€(3) of G€(3), 
to vector fields on 'H (regarded as a Hilbert manifold) whose domain of definition is $0. It is 
the Lie bracket of the resulting vector fields that must respect the bracket in G€(3). Because 
of the nonlinearity, the Lie bracket does not correspond to a commutator between operators, 
but to a more involved expression. It is this interpretation that justifies our statement that 
the members of our family of equations subject to (8) are Galilean invariant. This point 
of view suggests to us that the physically observable expectation value of the energy be 
identified with the quantity @aI} = J $H($) d3x. 

A generalized Schrodinger equation in onedimensional space was discussed recently 
by Malomed and Stenflo 1331, extending earlier work of Stenllo, Yu and Shukla [34]. We 
note the connection between their equation, motivated by a nonlinear dispersion relation 
for waves on surfaces between plasmas, and our work. Rewriting [33], equation (7) in our 
notation, we have 

where p is a real number and C is introduced as an arbitrary complex parameter. This family 
of equations intersects the unidimensional version of ours when we take h = 1, m = 2, 1 
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V 0, p = 0 and C = -iD/2; this is the special case of CI = A2 = 1, y = h4 = -1 
and CI = g = cs = 0 (respectively, AI  = 1 3  =As = 0). Thus we obtain 3~(1,0,0, -1, 0) 
with V 0, which is Galilean-invariant. The discussion in [33], particularly the remark 
that (9) can be derived from Hamiltonian density H ( x )  = la,$lz + 2 Re[C($/$)(&q)*], 
thus pertains to this subfamily. Results on the region in the space of coefficients that give 
modulational stability for plane-wave solutions to our family of equations (see below) have 
been obtained by Goldin, Malomed and Stenflo [35] using methods analogous to [33]. 

4. The Ehrenfest relations 

Equation (4) for the nonlinear time evolution lets us calculate the time dependence of the 
expectation value (A) for any observable in the Schrijdinger representation. In fact, for 
rlr E 90, 

d 1 
-($,A@) = -{($, HoA@) - ($7 AHo$)I + $(e. R[11-lA$) - ($. AR[11-1$)1 dt A 

+il($, ZI@lA@) + (P, AZI@l@)). (10) 

When A is the position operator sop, we have R[$]zop+ - z o p R [ 3 ] $  = 0, while 
Z[$]zw@ + zopI[@l$ = 2zZ[@l$ and ($, zZ[@]$) = 0: thus (sop} continues (as in 
the h e a r  case) to behave classically: 

This is expected from the way in which the time dependence was introduced. When A is 
the momentum operator pop = -%V, we calculate 

and 

(13) s d 
;(pop} = -(VV} + Dm / jD=Od3x - pVR[$] d3x. 

With R[g] given by (6), the second term of (13) (stemming from the imaginary nonlinear 
potentid iI[$J) can be rewritten: 

D m / 9 j D a d 3 x = h D  P s pV(R,[$] -R4[$l)d3x (14) 

where our calculation makes use of the fact that for i, k = 1,2 ,3 ,  with jDa = (jd. the 
quantity ( a / a x i ) ( j k / p )  is symmetric under exchange of the indices i and k. Furthermore, 
from the fact that J V(02p/p)d3x = 0, we derive 

2(+, V&[@I!b) = (9% VRS[@lJI). (15) 
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Thus 

-(pop) dt = - ( V V ) - h D / p V [ ( c i  - ~ ) ~ I + ( C Z + ~ ~ ~ ) R Z + C ~ R ~ + ( C ~ + ~ ) R ~ I ~ ~ X .  

H-D Doebner and G A Goldin 

d 

(16) 

We see that sufficient conditions for the extra, ‘dissipative’ terms in (22) to vanish are given 
by 

c1 = 1 cz+2c5 = O  c 3 = 0  c4=-1. (17) 

The corresponding one-parameter family Fp = F D ( ~ ,  CZ. 0, -1, -cz/2), cz E E, is 
automatically Galilean invariant from (8). For these equations, the time dependences of 
(z,) and (pop) are independent of D and have the usual classical limits given by the 
Ehrenfest theorem. 

For the equation F D ( - ~ ,  O,O,O, 0) studied in [17], we have from (16) 

The first term can be understood as arising from friction due to the velocity density j D 9 / p  
and the second term as due to the diffisive velocity density -DVp/p;  the terms cancel 
when jD9 is directly proportional to Vp.  This corrects typographical errors in equation (6) 
of [17]. 

5. On the solutions to the family of equations 

Next we construct and examine some solutions to our family of equations, including 
stationary and time-dependent solutions. 

When V(z) = 0, we have plane-wave solutions 

@&, t) = exp i(k. z - w f )  (19) 

with a dispersion relation o = (R/2m)k2 + (l /h)R[@]; since for a plane wave jD-’ = 
Rkjm, we obtain 

w =  (&+Dc3)kZ.  

This dispersion relation physically distinguishes cg from the other coefficients. 

coordinates separate, 
As in the linear D = 0 case, there are solutions to (9) in which the space and time 

@E(=,  t) = @ E @ )  exp ( - 1-f ’f ) H [ @ E ( ~ ) ]  = E @ E ( z )  (21) 

with E E R, where @E is square integrable and depends on V ( z ) ,  CI,. . . , c5 and 
D. When such solutions exist we call them stationary states, because of the fact that 
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alp = a,[g,(z, t)@&, t)f = 0. Note that defining 'stationarity' via alp = 0 gives us 
V . j D ( x ,  t )  = 0 i.e. j D ( x ,  t )  is a divergenceless vector field density that is otherwise 
arbitrary. To find solutions of the form of (21) to our family of nonlinear Scbrodinger 
equations, we construct aflliafed linear Schrodinger equations, in the sense that solutions 
to the latter yield solutions to the former via a nonlinear transformation of (21). In this 
way, we actually obtain eigenfunctions. Such methods are applicable to certain types of 
nonlinear partial differential equations, e.g. to Ricatti equations. 

Let us write (omitting an index to indicate possible degeneracy in E), 

@&) = f ~ ( 4  exp(ihE(4) (22) 

where f~ (z )  and h&) are real and f,&) > 0. 
jO(q t )  = 0 to ensure stationarity now implies 

Making the generic assumption 

(23) 
f i  
m 

- -fi(z)VhE(z) + D V f j ( z )  = 0. 

Hence 

h d z )  = r 1% f&e) (24) 

where r = Dm/fi is the dimensionless constant introduced in [17]. From (21)-(24), we 
obtain after a straightforward calculation the following result. Stationary solutions to the 
family of equations FD given by (4)-(6), satisfying H[$E]  = E@E,  are obtained from 
solutions to an affiliated linear Schrodinger equation 

(25) 
f iz  

2m* V2@&) f V ( Z ) @ E @ )  = E@&) _ _  

with the same potential V(z) as in FD, but with a shifted 'effective mass' m' = p m ;  where 
p E R is given by 

1 
01 = a(r, c,, . . . , c5) = p (1 - 4rc2 - 4 1 - 2 ~ ~ )  

In addition @E@) is square integrable if [ @ ~ ( z ) ] ~  is square integrable and bas the same 
degeneracy as @ E @ ) .  Note, however, that a set of degenerate eigenfunctions will not in 
general span a degeneracy subspace of eigenfunctions, because of the nonlinearity in the 
equation. It is desirable that ,!7 > 0, because otherwise the 'effective mass' m' becomes 
negative (or, altematively, the potential changes its sign). For any r, there ate values of 
c1, . . . , cs fulfilling these conditions, suggesting that a variety of dissipative processes can 
be described by R .  If R 0, then a = 1/(1- 4r2) and B = 1 - 4r2. 
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The cases LY 3 1 (for all r) and ,3 = 1 (for all r) are of special interest. The case 
01 1 is specified by the subfamily 

F-1 D .  ' CI + 2c4 = -1 c* + 2c5 = 0 cs = 0 (29) 

and the case f3 = 1 by the subfamily 

F{=I : q = o  2 ( 4 + c 4 ) = - 1  c j = c 5 = 0 .  (30) 

These families intersect in the equation FD(O, 0, 0, -1/2,0). The subfamily FEbr given 
by (17) is contained in SE'; in fact, e is just the (one-parameter) intersection of the 
Galilean-invariant subfamily with G=': 

G=~ n 4" = eh. (31) 

Furthermore, 3$=' fl e is empty. As discussed in [17], 3 ~ ( - 1 , 0 , 0 , 0 , 0 )  gives 01 = 1, 
B = i ~ i  +4r2). . .  

The smcture of these stationary solutions is clearest when we set LY = 1, so that (27) 
gives 

+E(m, t )  = +E(x)exp - i--t exp[ir log +E(z)~I. (32) 

We see that, because of the nonlinearity of (4). the bound-state solutions + E ( = )  of the 
affiliated linear Schriidinger equation with shifted mass m* and potential V(m) acquire 
a phase that depends on x through #E(z). A similar situation holds for LY # 1. The 
transition from the nonlinear equation to a related linear one is 'mediated' partly through 
this x-dependent phase. 

Some non-stationary solutions to om family of equations are known. Noting the role of 
the phase, Goldin [18] wote a one-dimensional Gaussian solution for F~(-1 ,0 ,0 ,0 ,0) ,  
with V = 0. Further Gaussian solutions have been constructed and studied by Dodonov, 
Mizrahi, Nattermann, Scherer, Ushveridze and the authors [36-391, in the cases V 5 0 
and V(x) proportional to x2. Among the results are soliton solutions in the free, Galilean- 
invariant case. For the harmonic oscillator potential it is shown in 1381 that for certain 
members of our family of equations Gaussian solutions approach asymptotically in time the 
ground state of the affiliated linear Schriidinger equation. Thus the ground state behaves 
like an attractor of a flow in 31 (understood as a Hilbert manifold). 

[ :I 

6. Summary and Conclusions 

A new family of nonlinear Schrodinger equations, that includes a diffusion term, originates 
from fundamental considerations of local symmetry in quantum mechanics. Natural 
assumptions on the form of an arbitrary, real nonlinear functional multiplying +, allowing 
for the usual linear potential V(x), lead to a five-parameter family 30 of evolution 
equations, which are candidates for describing dissipative and diffusion processes in quantum 
mechanics. 

The family has some very appealing properties. As D + 0 it goes over smoothly into 
the usual Schrodinger equation. For V = V ( Z ) ,  3 D  is rotation invariant; for V 0 it 
is Euclidean-invariant; and for certain choices of the five parameters it is even invariant 
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under a central extension of the Galileo group in which the timetranslation subgroup is 
represented nonlinearly. An ‘arrow of time’ associated with the sign of D is introduced 
into ordinary, nonrelativistic quantum mechanics in the simplest possible way. The time 
derivative of (zoa) is as in ordinary quantum mechanics, while the time derivative of (pop} 
has additional terms propoaional to D indicating dissipation or friction. 

Because our equation is homogeneous, it generalizes to a hierarchy of N-particle 
evolution equations that respect the separation property; i.e. initially uncorrelated 
subsystems, in the absence of interactions, remain uncorrelated [27,40]. 

We have found square-integrable stationary solutions. Bound states of an affiliated 
linear Schrodinger equation, with the same potential as in the linear case but with a shifted 
effective mass m*, give solutions of the nonlinear equation through a spatially dependent 
phase proportional to D. Extending this technique, time-dependent Gaussian solutions are 
also found. 

If such a nonlinear evolution equation proves acceptable, it has possible experimentally 
testable consequences. For example, the effective mass can be measured in precision 
quantum mechanical experiments, e.g. in two-level systems, while observation of a non- 
stationary particle’s ‘path’ together with the Ehrenfest relation leads in principle to an 
independent measurement of the mass m. Such experiments can give an upper hound on r. 

The group-theoretical justification for this nonlinear modification of quantum mechanics 
seems to suggest it as a ‘minimal’ nonlinear generalization of the Schrodinger equation. 
Such a model needs considerably more mathematical and physical investigation, and most 
importantly a convincing physical interpretation (which we do not yet have) for the sources 
of dissipation and the origin of the ‘arrow of time’ that it describes. 
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